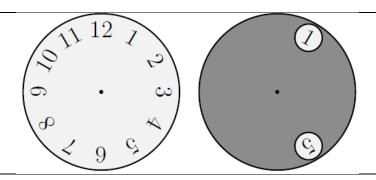


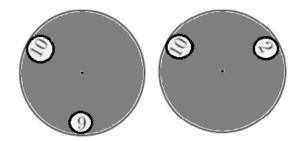
الحلول الكاملة لكتيب ثالث متوسط وأول ثانوي 2023 9-10 Junior 2023

إخراج اللجنة العلمية أ مها الداوود أعبد الوهاب الشيخ أ طارق فضل

إشراف


أ صفوت الطنايي

1. تم وضع دائرة رمادية بها ثقبان دائريان على سطح ساعة حائط، كما هو موضح. تدور الدائرة الرمادية حول مركزها بحيث يظهر الرقم
10 في أحد الثقبين. أيّ رقم من الممكن رؤيته في الثقب الآخر؟



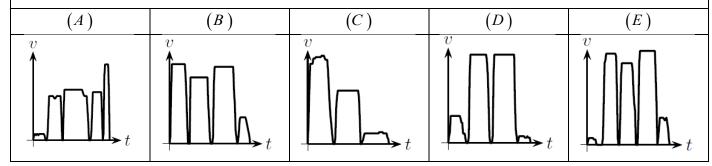
1. A grey circle with two holes is put on top of a clock-face, as shown. The grey circle is turned around the center such that the number 10 appears in one hole. Which number is it possible to see in the other hole?

(A)	(B)	(C)	(D)	(E)
2 أو 6	3 أو 7	3 أو 6	1 أو 9	2 أو 7
2 or 6	3 or 7	3 or 6	1 or 9	2 or 7

الحل: 🗛

توضح الصورة المعطاة أن الفرق بين رقمي الثقبين يساوي 4 ساعات. وهذا يتحقق عندما تكون الساعة في الثقب الثاني 2 أو 6 كما هو موضح في الصورة التالية.

The given picture shows that one hole will show a time 4 hours after the other. This is only true for A, as shown in the picture.



2. اضطرت ماريا أن تركض لتلحق بمترو الأنفاق، ثم نزلت بعد محطتين ثم سارت إلى المدرسة. أيّ الرسوم البيانية التالية -للعلاقة بين السرعة و الزمن- يمثل رحلتها على أفضل وجه؟

2. Maria had to run to catch the subway, got off two stops later and then walked to school. Which of the following speed-time graphs would best represent her journey?

الحل: D

لدينا سرعة المترو > سرعة ركض ماريا > سرعة مشي ماريا. الآن نصنف تحركات ماريا في رحلتها بالترتيب: ركض (سرعة وسط)، حركة مترو لحطتين (سرعة كبيرة)، مشى (سرعة صغيرة)، ويتخللها توقفات بين كل منهم، نجد أفضل تمثيل لتلك الرحلة هو الرسم D.

Because subway speed > Maria's running speed > Maria's walking speed. Now we classify Maria's movements in her journey in order: running (medium speed), two-stop subway movement (high speed), walking (low speed), and interspersed with stops between each. We find the best representation of that journey is graph D.

3. العددان الصحيحان الموجبان m و n كلاهما فردي. أي الأعداد الصحيحة التالية فردي أيضًا؟

3. The positive integers m and n are both odd. Which of the following integers is also odd?

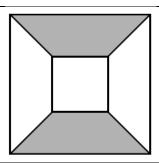
(A)	(B)	(C)	(D)	(E)
m(n+1)	$(m+1)\cdot(n+1)$	m+n+2	$m \cdot n + 2$	m+n

الحل: D

نعلم أن: (فردي × فردي = فردي) و (فردي × زوجي = زوجي) و (زوجي × زوجي = زوجي) و (فردي + زوجي = فردي) و (فردي × فردي = فردي) و (فردي + فردي = زوجي) و (زوجي + زوجي = زوجي). حيث أن m و n كلاهما فردي فإن الأعداد m+1,n+1,m+n كلها زوجية. وهكذا نجد الأعداد الناتجة من الخيارات n n n n n n n ووجية. فقط الناتج في الخيار n فردي.

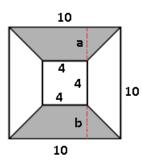
حل آخر: نختار m=1, n=3 ونحسب الناتج في كل خيار. أترك لك التفاصيل.

When m and n are both odd then m + 1, n + 1 and n + m are all even. That's why the integers in (A), (B), (C) and (E) are all even. Only (D) is still odd.


Alternative solution: We choose m = 1, n = 3 and calculate the result in each option. I leave the details for you.

4. مربع كبير طول ضلعه 10 cm يحتوي على مربع أصغر طول ضلعه 4 cm كما هو موضح في الرسم. الأضلاع المتناظرة للمربعين متوازية. ما هي النسبة المئوية للمنطقة المظللة من المربع الكبير؟

4. A large square of side-length 10 cm contains a smaller square of side-length 4 cm, as shown in the diagram. The corresponding sides of the two squares are parallel. What percentage of the large square is shaded?


(A)	(B)	(C)	(D)	(E)
25 %	30 %	40 %	42 %	45 %

الحل: D

المساحة الكلية للمربع الكبير تساوي $2 cm^2$. المنطقة المظللة مكوّنة من شبهي منحرفين قاعدتا كل منهما $10 cm^2$ ، وبفرض ارتفاعيهما a+b=6 كما بالشكل الموضح. ومن ثم a+b=6. إذن مساحة المنطقة المظللة تساوي

$$\frac{10+4}{2} \cdot a + \frac{10+4}{2} \cdot b = 7a+7b = 7(a+b) = 7 \times 6 = 42 \text{ cm}^2$$

 $42 \div 100 = 42\%$ إذن النسبة المئوية للمنطقة المظللة من المربع الكبير تساوي

The area of large square is $100 \, cm^2$. The shaded region consists of two trapezoids each of them has two bases with lengths $10 \, cm$, $4 \, cm$ and let their heights are a,b as in shown figure. Then a+b=6. Hence the area of the shaded region is

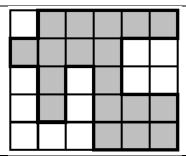
$$\frac{10+4}{2} \cdot a + \frac{10+4}{2} \cdot b = 7a+7b = 7(a+b) = 7 \times 6 = 42 cm^2$$

So, the percentage of the shaded area of the large square is equal to $42 \div 100 = 42\%$.

3 points				ثلاث نقاط	
			وم سيكون بعد 2023 يومًا؟	5. اليوم هو الخميس. أي ي	
5. Today is Thursday. What day will it be in 2023 days' time?					
(A)	(B)	(C)	(D)	(E)	
الثلاثاء	الأربعاء	الخميس	الجمعة	السبت	
Tuesday	Wednesday	Thursday	Friday	Saturday	

الحل: C

حيث أن 2023 يقبل القسمة على 7، فسيصبح بعدها اليوم يوم الخميس مرة أخرى.


Because 2023 is divisible by 7, this day again will be a Thursday.

6. المستطيل الكبير في الشكل مقسم إلى 30 مربعًا جميعها متساوية، كما هو موضح. إذا كان محيط المنطقة المظللة 240 m. ما مساحة المستطيل؟

6. The large rectangle in the diagram is divided into 30 equal squares, as shown. The perimeter of the shaded region is 240 cm. What is the area of the rectangle?

(A)	(B)	(C)	(D)	(E)
480 cm ²	750 cm ²	1080 cm ²	1920 cm ²	2430 cm ²

الحل: D

تحوي المنطقة المظللة 30 ضلع من أضلاع المربع الصغير بالمنطقة المظللة، معطى أن محيط تلك المنطقة $240\,cm$. إذن طول ضلع المربع المنطقة المظللة $30\,8 = 8\,cm$. وبالتالي أبعاد المستطيل هي $8\,20\,8 = 8\,cm$. إذن مساحة المستطيل هي

 $.40 \times 48 = 1920 \, cm^2$

30 sides of the small square surround the shaded region, given that the perimeter of that region is 240 cm. So, the side length of the small square is $\frac{240}{30} = 8 cm$. So, the dimensions of the rectangle are $5 \times 8 = 40 cm$, $6 \times 8 = 48 cm$. So, the area of the rectangle is $40 \times 48 = 1920 cm^2$.

7. يبلغ مجموع أعمار أسرة مكونة من خمسة أفراد 80عامًا. أصغر اثنين يبلغان من العمر 6 أعوام و 8أعوام. ما هو مجموع أعمار الأسرة قبل سبع سنوات؟

7. The ages of a family of five add to 80. The two youngest are 6 and 8. What was the sum of the ages of the family seven years ago?

(A)	(B)	(C)	(D)	(E)
35	36	45	46	66

الحل: D

قبل 7 أعوام لم يكن الطفل ذو 6 سنوات موجوداً، بالتالي مجموع أعمار بقية أفراد الأسرة = 74.

قبل 7 أعوام مجموع أعمارهم هو $46 = 7 \times 4 - 74$ عامًا.

The sum of the four eldest members of the family is 74. Seven years ago, the sum of their ages was 74 - 28 = 46. Seven years ago, the youngest child had not been born and so did not contribute to the sum of their ages.

8. يتكون السياج الخشبي من سلسلة من الألواح الرأسية، كل لوح منها متصل باللوح التالي بأربعة ألواح أفقية. اللوح الأول واللوح الأخير في السياج رأسيان. أياً مما يلي يمكن أن يكون إجمالي عدد الألواح في السياج؟

8. A wooden fence consists of a series of vertical planks, each joined to the next post by four horizontal planks. The first and last plank in the fence are vertical. Which of the following could be the total number of planks in the fence?

(A)	(B)	(C)	(D)	(E)
95	96	97	98	99

الحل: B

المجموعة الأولى في السياج تتكون من 6 ألواح (لوح البداية الرأسي + 4 ألواح أفقية + لوح رأسي).

تتكون بقية المجموعات من 5 ألواح (4 ألواح أفقية + لوح رأسي).

 $x \geq 1$ ، عدد صحيح الألواح سيكون على الصورة x + 1 ، حيث x عدد صحيح الألواح بالتالي فإن مجموع الألواح سيكون على الصورة

العدد الوحيد على هذه الصورة هو 1+(19)=66.

The first field of this fence consists of 6 planks (2 vertical and 4 horizontal planks), every next field consists of 5 planks (another vertical and 4 horizontal planks). So, the number must be some number of the form 5x + 1 where x is an integer, $x \ge 1$. The only number in this form is 96 = 5(19) + 1.

9. يجب استبدال الحرفين a و b بأعداد صحيحة موجبة حتى تكون المعادلة $\frac{a}{5} = \frac{7}{b}$ صحيحة. كم

9. The letters a and b are to be replaced by positive integers so that the equation $\frac{a}{5} = \frac{7}{b}$ is correct. In how many different ways can this be done?

(A)	(B)	(C)	(D)	(E)
0	1	2	3	4

الحل: E

$$\frac{a}{5} = \frac{7}{b} \Rightarrow a \cdot b = 35$$

وحيث a,b أعداد صحيحة موجبة ، فلا بد أن يكونا من القواسم الموجبة للعدد a,b ، وتكون القيم الممكنة للزوج المرتب (a,b) هي

وعددها 4.

$$\frac{a}{5} = \frac{7}{b} \Rightarrow a \cdot b = 35$$

Since the prime decomposition of 35 is 5.7 all ordered pairs of positive integers that fulfill this equation are (1, 35), (35, 1), (5, 7) and (7, 5), and the number of them is 4.

10. بعد أن قمت بلعب 200 مباراة في الشطرنج، كان معدل الفوز في المباريات هو % 49 بالضبط. ما أقل عدد من المباريات الإضافية التي أحتاج إلى لعبها ليزيد معدل الفوز ويصبح % 50 بالضبط؟

10. After having played 200 games of chess, my winning rate is exactly 49 %. What is the smallest number of extra games I need to play to increase my winning rate to exactly 50 %?

(A)	(B)	(C)	(D)	(E)
0	1	2	3	4

الحل: E

عدد المباريات التي فزت فيها هو $98 = 200 \times \frac{49}{100}$ مباراة، ومن ثم عدد المباريات التي خسرت فيها هو 98 = 200. حتى يصبح معدل الفوز 80 = 100 مباريات القوز مع عدد مرات الخسارة. إذن أحتاج إلى لعب 4 مباريات إضافية كي يصبح عدد مرات الفوز يساوي عدد مرات الخسارة يساوي 102، ولا يتحقق بعدد مباريات أقل من ذلك.

Winning 49% of 200 games means winning 98 games and not winning 102. For me to have equal number of wins and NOT wins I need to win 102–98 = 4 games to have 102 wins meaning 50% rate of success.

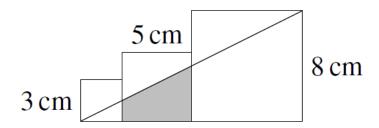
11. يحاول سالم توفير المياه. فخفض الوقت الذي يقضيه في الاستحمام بمقدار الربع، كما خفض ضغط الماء في الدش لتقليل معدل خروج الماء من رأس الدش بمقدار الربع. بأي نسبة قلل سالم الكمية الإجمالية للمياه التي يستخدمها للاستحمام؟

11. Salem is trying to save water. He reduced the time he spent in his shower by a quarter. He also lowered the water pressure of his shower to reduce the rate the water comes out of the shower head by a quarter. By what fraction did Salem reduce the total amount of water he uses for a shower?

(A)	(B)	(C)	(D)	(E)
1	3	5	5	7
$\frac{\overline{4}}{4}$	$\frac{\overline{8}}{8}$	$\frac{\overline{8}}{8}$	$\overline{12}$	16

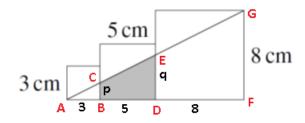
الحل: E

بفرض أن كمية المياه القديمة التي كان تخرج من الدش في الثانية هي x (مليلتر)، وكان يستهلكها لزمن قدره t (ثانية). ومن ثم كمية الماء المستخدم بعد المستخدم بعد التخفيض أصبحت كمية المياه في الثانية هو $\frac{3}{4}x$ ، ويستخدمها لمدة $\frac{3}{4}t$ ومن ثم كمية المستخدم بعد التخفيض يساوي $\frac{7}{16}xt \div xt = \frac{7}{16}$. بالتالي فإن الكمية المخفضة تساوي $\frac{7}{16}xt \div xt = \frac{7}{16}$. ونسبتها من الكمية القديمة هي $\frac{7}{4}xt \div xt = \frac{7}{16}$.


Let the old amount of water that comes out of the shower per second is x (milliliter), and he consumes it for a time of t (seconds). Hence the amount of water consumed in the past is xt. After the reduction, the amount of water per second is $\frac{3}{4}x$, and it is used for a period of time $\frac{3}{4}t$. Hence, the amount used after reduction is equal to $\frac{3}{4}x \times \frac{3}{4}t = \frac{9}{16}xt$. Therefore, the reduced quantity is equal to $\frac{7}{16}xt$, and its ratio of the old quantity is $\frac{7}{16}xt \div xt = \frac{7}{16}$.

12. يوضح الشكل ثلاثة مربعات أطوال أضلاعها 8 cm ، 5 cm ، 8 cm مساحة شبه المنحرف المظلل؟

12. The diagram shows three squares of side-length $3 \ cm$, $5 \ cm$ and $8 \ cm$. What is the area of the shaded trapezium?


(A)	(B)	(C)	(D)	(E)
13 cm ²	$\frac{55}{4} cm^2$	$\frac{61}{4}$ cm ²	$\frac{65}{4}$ cm ²	$\frac{69}{4}$ cm ²

الحل: B

ليكن طولا الضلعين المتوازيين في شبه المنحرف p,q ، ولنسمي بعض الرؤوس كما بالرسم الموضح. من تشابه المثلثات الثلاثة

ومن ثم مساحة شبه المنحرف المظلل تساوي .
$$p = \frac{3}{2}$$
 , $q = 4$ ومنها $p = \frac{3}{2}$. ومنها $p = \frac{3}{2}$ ومنها المنحرف المظلل تساوي . $p = \frac{3}{2}$ ومنها المنحرف المظلل تساوي . $p = \frac{3}{2}$

$$\frac{1}{2} \times \left[\frac{3}{2} + 4 \right] \times 5 = \frac{55}{4} cm^2$$

Let the lengths of the vertical sides of the trapezium be p and q, and let's name some vertices as shown in the figure. Now using similar triangles *ABC*, *ADE*, *AFG* we get

 $\frac{p}{3} = \frac{q}{3+5} = \frac{8}{3+5+8}$. So $p = \frac{3}{2}$, q = 4. Hence the area of the shaded trapezium is

$$\frac{1}{2} \times \left\lceil \frac{3}{2} + 4 \right\rceil \times 5 = \frac{55}{4} cm^2$$

4 points قربع نقاط و figure الله عنقاط و figu

13. تم قطع سلك طوله m 95 إلى ثلاث قطع بحيث يكون طول كل قطعة أطول من القطعة السابقة بمقدار % 50. ما هو طول أكبر قطعة؟

13. Wire of length 95 m is cut into three pieces such that the length of each piece is 50 % more than the previous piece. What is the length of the largest piece?

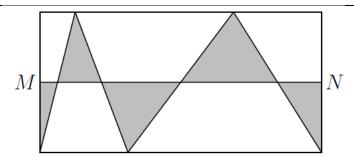
(A)	(B)	(C)	(D)	(E)
36 m	42 m	45 m	46 m	48 m

الحل: C

ليكن طول القطعة الصغرى
$$x$$
، ومن ثم طول القطعة الوسطى يساوي $\frac{3}{2}x$ وطول القطعة الكبرى يساوي x وبالتالي $x+\frac{3}{2}x+\frac{9}{4}x=95$

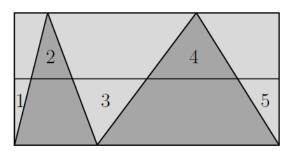
$$\frac{9}{4} \times 20 = 45$$
 بالضرب في 4 تتحول المعادلة إلى $20 = 4x + 6x + 9x = 380$ ومنها $20 = 4x + 6x + 9x = 380$ بالضرب في 4 تتحول المعادلة إلى $20 = 45$

Let the length of the small piece x, then the length of the middle one is $\frac{3}{2}x$ and the length of largest one is $\frac{3}{2} \cdot \frac{3}{2}x = \frac{9}{4}x$. Now we have


$$x + \frac{3}{2}x + \frac{9}{4}x = 95$$

Multiplying by 4 turns the equation into 4x + 6x + 9x = 380, then 19x = 380, then x = 20. So the length of the largest piece is $\frac{9}{4} \times 20 = 45$.

14. النقطتان M و N هما نقطتا المنتصف لضلعين متقابلين في مستطيل. ما الكسر الذي يمثله الجزء المظلل من مساحة المستطيل؟


14. Points *M* and *N* are the midpoints of two sides of the rectangle. What fraction of the area of the rectangle is shaded?

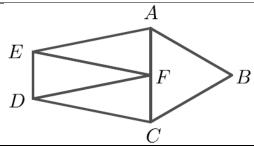
(A)	(B)	(C)	(D)	(E)
1	1	1	1	1
6	5	$\frac{\overline{4}}{4}$	$\overline{3}$	$\frac{\overline{2}}{2}$

الحل: C

بملاحظة أن مساحة المستطيل تساوي مجموع مساحات المثلثات الكبرى. وبملاحظة أن (قاعدة وارتفاع) كل مثلث مرقم تساوي (نصف قاعدة ونصف ارتفاع) المثلث الكبير الذي يحتويه تساوي

 $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$. وهي النسبة نفسها بين مساحة الجزء المظلل ومجموع مساحات المثلثات الكبيرة (أي مساحة المستطيل).

Because their height and base are half the size of the larger triangles, each of the five shaded small triangles has an area equal to $\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$ of the corresponding large triangle. The same is true for the sum.



4 points أربع نقاط أربع نقاط

DFE و AEF بينما المثلثات ABC إلى أربعة مثلثات لها نفس المحيط. المثلث ABC متطابق الأضلاع، بينما المثلثات ABC و ABC هي ثلاثة مثلثات متطابقة الضلعين ومتطابقة. ما هي نسبة محيط الخماسي ABCDE إلى محيط المثلث ABC

15. Pentagon ABCDE is divided into four triangles with equal perimeter. Triangle ABC is equilateral and AEF, DFE and CDF are three identical isosceles triangles. What is the ratio of the perimeter of the pentagon ABCDE to the perimeter of triangle ABC?

(A)	(B)	(C)	(D)	(E)
2	3	4	5	5
1	$\overline{2}$	$\overline{3}$	$\overline{3}$	$\overline{2}$

الحل: D

 $(AB+BC)=rac{2}{3}$ نفرض المحيط المتساوي لكل من المثلث الأربعة هو n . بما أن المثلث ABC متطابق الأضلاع، بالتالي n

من المثلثات متطابقة الضلعين والمتطابقة الثلاثة نجد CDF الأن من محيط المثلث AF=CF=DE , AE=FE=FD=CD نجد:

يساوي
$$ABCDE$$
 يساوي ، $n = (CD + CF + DF) = (CD + DE + EA)$

$$(AB + BC) + (CD + DE + EA) = \frac{2}{3}n + n = \frac{5}{3}n$$

اذن النسبة المطلوبة تساوي
$$\frac{5}{3}$$
.

Let the equal perimeter for each of the four triangles be n. Since the triangle ABC is equilateral, so $(AB + BC) = \frac{2}{3}n$. From the three identical isosceles triangles we can find AF = CF = DE, AE = FE = FD = CD. Now from the perimeter of triangle CDF we can find n = (CD + CF + DF) = (CD + DE + EA). So, the perimeter of the pentagon ABCDE is

$$(AB + BC) + (CD + DE + EA) = \frac{2}{3}n + n = \frac{5}{3}n$$

So, the required ratio is $\frac{5}{3}$.

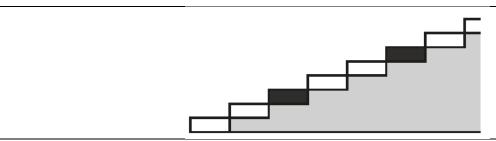
4 points	أربع نقاط
----------	-----------

16. يوجد برج على الطاولة مكون من مكعبات مرقمة من 1 إلى 90. يأخذ بلال في كل مرة ثلاثة مكعبات من أعلى البرج لبناء برج جديد كما هو موضح. عند انتهائه من بناء البرج الجديد، كم عدد المكعبات التي ستكون بين المكعبين رقم 39 ورقم 40?

90	3
89	2
88	1
i	:
4	85
4 3	85 90
4	85 90 89

16. On the table there is a tower made of blocks numbered from 1 to 90. Belal takes blocks from the top of the tower, three at a time, to build a new tower, as shown. When he has finished building the new tower, how many blocks will be between the blocks numbered 39 and 40?

(A)	(B)	(C)	(D)	(E)
0	1	2	3	4


الحل: E

In the new tower, under each block numbered by an integer divisible by 3, there will be successively blocks numbered by integers lower by 1 and by 2. The number 39 is divisible by 3, so there will be blocks numbered 38 and 37 underneath it. Under the block numbered 37 there will be the block numbered by the next integer after 39 that is divisible by 3, i.e. 42, and under it blocks numbered 41 and 40. It follows that between blocks numbered 39 and 40 there will be 4 other blocks (numbered 38, 37, 42 and 41).

17. يتم تلوين كل ثالث درجة من الدرج المكون من 2023 درجة باللون الأسود. الدرجات السبع الأولى موضحة بالشكل التالي. تصعد آية الدرج درجة تلو الأخرى، بدءًا بقدمها اليمنى أو اليسرى، بالتناوب لكل خطوة. ما أقل عدد من الدرجات السوداء تخطوها بقدمها اليمنى؟

17. Every third step of a staircase with 2023 steps is colored black. The first seven steps are shown in the diagram. Ayah walks up the steps one at a time, starting with either her right or left foot, alternating each step. What is the smallest number of black steps she will step on with her right foot?

(A)	(B)	(C)	(D)	(E)
0	333	336	337	674

الحل: D

سواء بدأت آية الصعود بالقدم اليمنى أو اليسرى فإنما في كل مجموعة مكونة من 6 درجات تحوي درجتين ملونتين باللون الأسود ستدوس آية على إحداهما بقدمها اليمنى وعلى الأخرى بقدمها اليسرى، ويتكرر النمط كل 6 درجات. لاحظ أن $1+6\times 337=2020$ وبالتالي توجد 337 مبموعة في كل منها تدوس آية على درجة سوداء والدرجة الأخيرة ستكون بيضاء لأنما بداية مجموعة جديدة.

Regardless of whether Ayah starts on her right or her left foot, she will repeat the pattern of steps every 6 steps. In these 6 steps, she steps on one black step with her right foot (and with her left foot on the other black step). $2023 = 337 \times 6 + 1$. Since the first step in every set of 6 steps is white (not black), she will step on exactly 337 black steps.

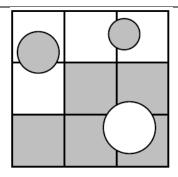
18. نسمي عددًا مكونًا من رقمين بقليل القوة إذا لم يكن من الممكن كتابة أي من أرقامه في صورة عدد صحيح a بقوة أكبر من 1. على سبيل المثال: العدد 53 هو قليل القوة، ولكن العدد 54 ليس قليل القوة لأن $a = 2^2$ أياً عما يلي هو قاسم مشترك لأصغر عدد قليل القوة وأكبر عدد قليل القوة?

18. We call a two-digit number power-less if none of its digits can be written as an integer to a power greater than 1. For example, 53 is power-less, but 54 is NOT power-less since $4 = 2^2$. Which of the following is a common divisor of the smallest and the largest power-less numbers?

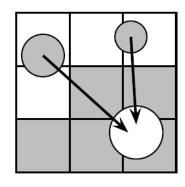
(A)	(B)	(C)	(D)	(E)
3	5	7	11	13

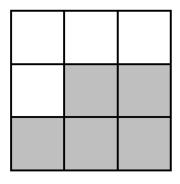
الحل: D

لننظر لأرقام عدد مكون من رقمين وقليل القوة، لا يمكن أن تكون 0,1,4,9 لأن 2 2 = 2 2 = 2 4 = 2 0 ، وبالتالي يمكن أن تكون فقط 2,3,5,7 . إذن أصغر عدد قليل القوة هو 22 وأكبر عدد هو 77 ، والقاسم المشترك الأكبر لهما 11 .


The digits of a power-less number can be among 2, 3, 5, 6, and 7 only since both 0 and 1 can be written as any power of themselves and 9 = 32, 8 = 23, 4 = 22. The smallest two-digit number is 22 and the largest one is 77 and it is easy to see that they have only one common divisor greater than 1, that is 11.

5cm مربع طول ضلعه 30cm مقسم إلى تسعة مربعات صغيرة متطابقة. المربع الكبير يحتوي على ثلاث دوائر أنصاف أقطارها 30cm (أسفل اليمين)، 4cm (أعلى اليمين)، كما هو موضح. ما هي مساحة الجزء المظلل؟




19. A square of side 30cm is divided into nine identical smaller squares. The large square contains three circles with radii 5cm (bottom right), 4cm (top left) and 3cm (top right), as shown. What is the area of the shaded part?

(A)	(B)	(C)	(D)	(E)
$400cm^2$	$500cm^2$	$(400+50\pi)cm^2$	$(500-25\pi)cm^2$	$(500+25\pi)cm^2$

الحل: B

لأن مساحة الدائرة تساوي πr^2 (حيث r طول نصف قطر الدائرة). إذن مساحة الدائرة المظللة الصغرى تساوي πr^2 ومساحة الدائرة المظللة الوسطى تساوي πr^2 ومن ثم مساحة الدائرة البيضاء تساوي مجموع المظللة الوسطى تساوي πr^2 ومن ثم مساحة الدائرة البيضاء تساوي مساحة الكبرى تساوي πr^2 ومن ثم مساحة الدائرة البيضاء تساوي مساحة πr^2 مربعات مساحتي الدائرتين المظللتين. وحيث أن طول ضلع المربع الصغير يساوي πr^2 فتكون مساحة الجزء المظلل تساوي مساحة πr^2 مربعات مساوي πr^2 المظللة المساوي مساحة πr^2 مربعات مساوي πr^2 المظللة المساوي مساحة المؤللة المساوي أدائرة المؤللة المساوي أدائرة المؤللة المؤل

Note that the sum of the areas of the two smaller grey circles is the same as that of the big white circle since $32\pi + 42\pi = 52\pi$. So, exchanging the two grey circles with the white one, the region becomes a simple polygon whose area is $\frac{5}{9} \times 30^2 = 500cm^2$.

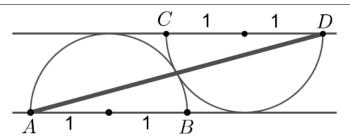
20. يحسب خالد متوسط خمسة أعداد أولية مختلفة. وكان الناتج عددًا صحيحًا. ما هو أصغر عدد صحيح ممكن أن يحصل عليه؟

20. Khaled calculates the mean of five different prime numbers. His answer is an integer. What is the smallest possible integer he could have obtained?

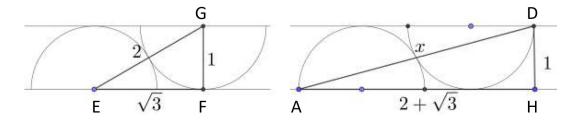
(A)	(B)	(C)	(D)	(E)
2	5	6	12	30

الحل: C

2,3,5,7,11 كي يكون ناتج المتوسط عدداً صحيحاً، يجب أن يكون مجموع الأعداد يقبل القسمة على 5. أصغر خمسة أعداد أولية هي 2,3,5,7,11 العدد ومجموعها = 28 لا يقبل القسمة على 5. ولأن أصغر مضاعف للعدد 5 أكبر من 28 هو 20، يمكننا الحصول عليه من استبدال العدد 20 بالعدد 20 فيكون المتوسط هو 20 = $\frac{2+3+5+7+13}{5}$.


The sum of 5 primes must be divisible by 5. The sum of the first 5 primes 2+3+5+7+11 = 28 does not work. Since the least multiple of 5 more than 28 is 30, we can get it by increasing 11 to 13 we get a solution for the average of 6: 2 + 3 + 5 + 7 + 13 = 30.

21. يُظهر الشكل التالي نصفي دائرة متماستين نصف قطر كلّ منهما 1، القطران AB و CD متوازيان. ما هو مربع المسافة AD؟



21. The diagram shows two touching semicircles of radius 1 and parallel diameters AB and CD. What is the square of the distance AD?

(A)	(B)	(C)	(D)	(E)
16	$8+4\sqrt{3}$	12	9	$5+2\sqrt{3}$

الحل: B

. $EF=\sqrt{2^2-1^2}=\sqrt{3}$ في الشكل التالي الأيسر: لاحظ أن EG=1+1=2 . بتطبيق فيثاغورس على ΔEFG : بخد أن في الشكل التالي الأيمن ΔAHD : بخد أن في الشكل التالي الأيمن ΔAHD : بخد أن ΔAHD . الآن بتطبيق فيثاغورس على ΔAHD : بخد أن ΔAHD . ΔAHD

In the left figure shown; we can notice that EG=1+1=2. From application of the Pythagorean theorem in ΔEFG , we find $EF=\sqrt{2^2-1^2}=\sqrt{3}$. So in the right figure shown $AH=1+\sqrt{3}+1=2+\sqrt{3}$. From application of the Pythagorean theorem in ΔAHD , we can find $(AD)^2=\left(2+\sqrt{3}\right)^2+1^2=8+4\sqrt{3}$.

22. عندما يتم إدخال قائمة بأربعة أعداد في جهاز الكانجارو، يقوم الجهاز بإكمال القائمة عن طريق كتابة أصغر عدد صحيح غير سالب يختلف عن كل من الأعداد الأربعة السابقة كعدد خامس في القائمة، ثم يضيف الأعداد للقائمة واحدًا تلو الآخر بنفس الطريقة. كتب يعقوب الأعداد

2,0,2,3,

في الجهاز (من اليسار إلى اليمين). فما هو العدد الذي ترتيبه 2023 في القائمة؟

22. When it is given a list of four numbers, the Kangaroo Machine continues the list by typing the smallest non-negative integer that is different to each of the four preceding terms and then repeats this process over and over again. Jaqob types in the numbers 2,0,2,3,

into the machine. What number will be the 2023rd in the list?

(A)	(B)	(C)	(D)	(E)
0	1	2	3	4

الحل: C

سلسلة الأعداد التي سيكتبها الجهاز ستكون على الشكل التالي:

2,0,2,3,1,4,0,2,3,1,4,0,2,3,1,4,...

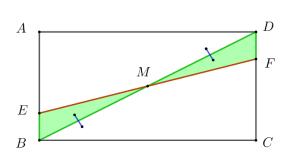
لاحظ أن المتسلسلة بدءاً من الحد الثاني عبارة عن دورة متكررة مكوّنة من 5 أعداد هي {0,2,3,1,4}. العدد الذي ترتيبه 2023 بعد تجاوز الحد الأول سيتبقى 2022 حداً، وبعد حذف دورات متكررة (طول كل منها 5 أعداد) سيكون العدد المطلوب مطابقاً للعدد الثاني في الدورة المتكررة و هو 2.

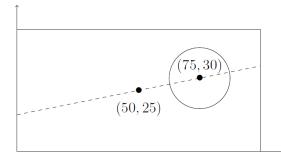
The sequence of digits typed by the machine is:

Starting from the second digit this sequence has a period of 5. Then a number in the 2023rd position is the same as a number in the 3rd position, i.e., 2.

23. مستطيل رؤوسه (75,30),(0,50),(100,50),(100,50)، قطعنا منه دائرة مركزها (75,30) وطول نصف قطرها 10، ما ميل المستقيم المار بالنقطة (75,30) الذي يقسم الباقي من مساحة المستطيل إلى قسمين متساويين؟

23. A rectangle with vertices (0,0), (100,0), (100,50) and (0,50) has a circle with center (75,30) and radius 10 cut out of it. What is the gradient of the line through (75,30) that divides the remaining area of the rectangle into two equal parts?


(A)	(B)	(C)	(D)	(E)
1	1	1	2	2
5	$\frac{\overline{3}}{3}$	$\frac{\overline{2}}{2}$	- 5	$\frac{\overline{3}}{3}$


الحل: 🗛

حقيقة: أي مستقيم يمر بمركز المستطيل (نقطة تقاطع قطريه) يقسمه لجزأين متساويين في المساحة. لبرهنة ذلك خذ المستطيل ABCD في الشكل الأيسر الموضح. لتكن M مركزه (ستكون منتصف كل من (AC,BD). لنأخذ المستقيم EF يمر ب M كما بالشكل الأيسر الموضح. يمكننا ملاحظة أن المثلثين BEM, DFM زواياهما متساوية، BM = DM، وبالتالي المثلثان متطابقان (حالة SAA). وينتج أن EM = FM. أصبحت الآن M منتصفات القطع المستقيمة AC, BD, EF ومن ثم الشكلين AEFD, CFEB كل منهما انعكاس للآخر حول M، وبالتالي فهما متطابقان ومتساويان في المساحة.

نعود للسؤال، بما أن أي مستقيم يمر بمركز الدائرة (75,30) سينصّف مساحة الدائرة، أي مستقيم يمر بمركز المستطيل سينصّف مساحة (0+100,0+50)=(0+100,0+50)=(0+100,0+50)=(0+100,0+50). المستطيل مع ملاحظة أن مركز المستطيل سيكون منتصف أي رأسين متقابلين. إذن مركز المستطيل هو (50,25)=(50,25)=(0+100,0+50).

بما أن الدائرة تقع بالكامل داخل المستطيل، فإن المستقيم الواصل بين مركز الدائرة (75,30) ومركز المستطيل (50,25) سيقسم المساحة المتبقية من المستطيل إلى قسمين متساويين. وسيكون ميله يساوي $\frac{1}{5} = \frac{30-25}{75-50}$.

Fact: Any line through the center of the rectangle bisects the area of the rectangle. To prove this, take the rectangle ABCD in the left figure shown. Let M be its center (will be the midpoint of both of AC,BD). EF passes through M, as in the left figure shown. We can notice that the two triangles BEM,DFM have equal angles and BM=DM, so these two triangles are congruent (case SAA), then EM=FM. Since M the midpoint of line segments

AC,BD,EF, then the reflection of AEFD over M is CFEB, hence these figures are congruent and have the same area.

Now, back to our problem. Any line through the center of the circle (75, 30) bisects the area of the circle. Any line through the center of the rectangle bisects the area of the rectangle. Since the center of the rectangle is the midpoint of two opposite vertices, then the center of the rectangle is $(\frac{0+100}{2}, \frac{0+50}{2}) = (50,25)$. Since the circle lies wholly within the rectangle, the line passing through the center of the rectangle and the center of the circle must cut the

remaining area in half, as a semicircle is cut out of each side. So, the gradient of the line dividing the remaining area of the rectangle into two equal parts is the gradient of the line

that passes through (50, 25) and (75, 30) and so has a gradient of $\frac{30-25}{75-50} = \frac{1}{5}$.

24. عندما يكون هاتف محمد مشحونًا بالكامل، ينفد الشحن في غضون 32 ساعة إذا استخدمه فقط للمكالمات الهاتفية، وينفد الشحن في غضون 20 ساعة إذا لم يستخدمه على الإطلاق. ركب محمد القطار في غضون 20 ساعة إذا لم يستخدمه على الإطلاق. ركب محمد القطار وهاتفه مشحون إلى النصف. وأثناء وجوده في القطار، كان الوقت الذي قضاه على الإنترنت والوقت الذي أجرى فيه المكالمات الهاتفية والوقت الذي لم يستخدم فيه هاتفه كلها متساوية. نفد شحن هاتفه عندما وصل القطار إلى وجهته. كم ساعة استغرقت رحلة القطار؟

24. When Mohammed's phone is fully charged, it runs out in 32 hours if he only uses it for phone-calls, in 20 hours if he only uses it for the internet, and in 80 hours if he does not use it at all. Mohammed gets on a train with his phone half-charged. While on the train, the time he is on the internet, the time he is making phone-calls and the time he is not using it are all the same. His phone runs out of charge just as the train reaches his destination. How many hours did the train journey take?

(A)	(B)	(C)	(D)	(E)
10	12	15	16	18

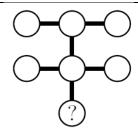
الحل: D

لأن هاتف محمد مشحون إلى النصف، سينفد الشحن في غضون 16 ساعة إذا استخدمه فقط للمكالمات الهاتفية، وينفد الشحن في غضون 10 ساعة إذا لم يستخدمه على الإطلاق. لنفرض أن شحن البطارية تساوي 10 ساعة إذا لم يستخدمه على الإطلاق. لنفرض أن شحن البطارية تساوي 1 مسرعة استهلاك البطارية من المكالمات تساوي 1 مسرعة استهلاك البطارية من الإنترنت تساوي 1 مسرعة استهلاك البطارية 1 مسرعة استهلاك البطارية من المكالمات تساوي 1 مسرعة استهلاك البطارية من الإنترنت تساوي 1 مسرعة استهلاك البطارية البطارية من المكالمات تساوي 1 مسرعة استهلاك البطارية من الإنترنت تساوي 1 مسرعة استهلاك البطارية من المكالمات تساوي 1 مسرعة استهلاك البطارية من الإنترنت تساوي 1 مسرعة الستهلاك البطارية من المكالمات تساوي 1 مسرعة الستهلاك المكالمات تساوي 1 مسرعة المكالمات تساوي المكالمات تساوي المكالمات تساوي ألمان المكالمات تساوي ألمان المكالمات المكالمات تساوي ألمان المكالمات المكالمات المكالمات تساوي ألمان المكالمات المكالمات

أثناء عدم استخدامه تساوي $\frac{1}{40}$. ليكن زمن رحلة القطار هو x، وهو مقسم بالتساوي بين المكالمات والإنترنت وعدم الاستخدام فيكون

زمن كل منهم
$$\frac{x}{3}$$
. بالتالي سيكون:

$$\frac{x}{3} \left(\frac{1}{16} + \frac{1}{10} + \frac{1}{40} \right) = 1 \Rightarrow x = 16$$


Because Mohammed's phone is half charged, the times the battery will run out are 40, 16, and 10 hours respectively. Let say the journey took x hours. Then, it used x/120 and x/48 and x/30 from battery and their total is 1. We find x = 16 from here.

25. سبعة أرقام مختلفة (كل منها عدد كلي مكون من منزلة واحدة)، كُتب كل منها في دائرة من دوائر الشكل الموضح، بحيث يكون حاصل ضرب الأرقام الثلاثة على الخطوط الثلاثة متساوي دائمًا. أي رقم مكتوب في الدائرة التي تحتوي على علامة الاستفهام؟

25. Seven different single-digit numbers are written in the circles of the diagram shown with one number in each circle. The product of the three numbers in each of the three lines of three numbers is the same. Which number is written in the circle containing the question mark?

(A)	(B)	(C)	(D)	(E)
2	3	4	6	8

الحل: A

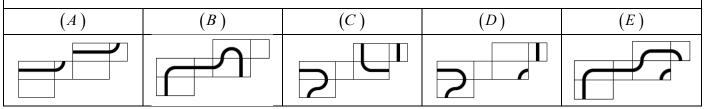
من السهل ملاحظة أنه لا يمكن استخدام أي من الرقمين 5,7، لأن كل رقم سيكتب في مجموعتين على الأكثر من المجموعات الثلاث، لذلك لا يمكن أن يكون حاصل ضرب أرقام المجموعة الثالثة مساوياً لحاصل ضرب كل من المجموعتين الأخريين. لاحظ أيضًا أن حاصل ضرب أرقام الصف الثاني (ولا يشتركان في أي رقم)، ولذا يجب أن يكون حاصل ضرب جميع الأرقام في الصفين الأفقيين مربعًا كاملاً. لكن حاصل ضرب جميع الأرقام السبعة التي تظهر هو $2^7 \times 3 \times 8 \times 8 \times 8 \times 1$. إذن يمكن أن يكون الرقم الموجود في الدائرة التي تحوي علامة الاستفهام 2^{-1} أو 2^{-1} . دعنا ندرس كل حالة.

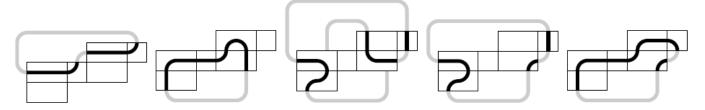
- في حالة الرقم الموجود في الدائرة التي تحوي علامة الاستفهام هو 8. سيكون حاصل ضرب أرقام العمود من مضاعفات العدد 8، بينما حاصل ضرب أرقام كل صف أفقي هو $8 = \frac{\sqrt{2 \times 3 \times 4 \times 6 \times 9}}{\sqrt{2 \times 3 \times 4 \times 6 \times 9}}$ وهو ليس من مضاعفات 8. إذن الحالة مرفوضة.

- في حالة الرقم الموجود في الدائرة التي تحوي علامة الاستفهام هو 2. سيكون حاصل ضرب أرقام كل صف أفقي هو

حاصل $\{9,4,2\}$ والعمود $\{9,4,2\}$ على ذلك: الصف الأول $\{1,9,8\}$ ، الصف الثاني $\{3,4,6\}$ والعمود $\{9,4,2\}$ ، حاصل الضرب المشترك 72 .

It is easy to see that neither 5 nor 7 can be used because each number is at most on two sets of three numbers, so the third set cannot have the same product as each of the other two. The product of all the numbers in the two horizontal rows must be a perfect square (the square of the common product). But the product of all seven digits that appear is $2 \times 3 \times 4 \times 6 \times 8 \times 9 = 2^7 \times 3^4$. So, the number on the circle with the question mark can only be $2^1 = 2$ or $2^3 = 8$. But it cannot be 8 because then the product of each row would be $\sqrt{2 \times 3 \times 4 \times 6 \times 9} = 36$, but this is not a multiple of 8. So, the number in the circle is 2. If we want an example to see that this is possible, we have: First row 1, 9, 8, second row 3, 4, 6 and column 9, 4, 2, with common product 72.




26. رسم ياسر مسارًا مغلقًا على صندوق على شكل متوازي مستطيلات. ثم قام بفتح الصندوق من بعض جوانبه وبسطه ليكون شبكة. أي الشبكات التالية لا توضح المسار الخاص بياسر؟

26. yasser has drawn a closed path on a cuboid and then unfolded it to give a net. Which of the nets shown *could not* be the net of yasser's cuboid?

الحل: C

برسم الخطوط الرمادية التي توضح القطع التي ستتصل ببعضها في متوازي المستطيلات، من الواضح أن الشكل C يعطي مسار غير مغلق.

Connections in grey show which pieces are glued together (i.e. belong to the same path).

27. كم عدد الأعداد الصحيحة الموجبة χ المكونة من ثلاثة أرقام، بحيث أن ناتج طرح مجموع أرقام العدد χ من العدد χ نفسه يعطي عددًا مكونًا من ثلاثة أرقام متشابحة؟

27. How many three-digit positive integers x are there, such that subtracting the sum of digits of x from x gives a three-digit number whose digits are all the same?

(A)	(B)	(C)	(D)	(E)
1	2	3	20	30

الحل: D

الأعداد المكونة من ثلاثة أرقام على الصورة $x=\overline{abc}=100a+10b+c$. الناتج المطلوب سيكون على الصورة

$$\overline{abc} - (a+b+c) = (100a+10b+c) - (a+b+c) = 99a+9b = 9(11a+b)$$

 $1 \le a,b,d \le 9$, $a,b,d \in \mathbb{Z}$ ، حيث ، $\overline{ddd} = 111d$ المطلوب أن يكون الناتج مكونًا من ثلاثة أرقام متشابحة فيكون على الصورة

. 3 يقبل القسمة على
$$d$$
 . $9(11a+b)=111d \Rightarrow 11a+b=rac{37d}{3}$ إذن

-1 الحالة الأولى: 11a+b=111 المحالة الأولى: 11a+b=11a+b=11 وهذا يتناقض مع الشرط

- الحالة الثانية: a=6,b=8 وها حل وحيد يحقق الشروط وهو a=6,b=8 . وبالتالي فمجموعة الأعداد التي تحقق الشرط هي a=6,b=8 وعددها 10 أعداد.

- الحالة الثالثة: a=3,b=4 ولها حل وحيد يحقق الشروط وهو a=3,b=4 . وبالتالي فمجموعة الأعداد التي تحقق الشرط هي a=3,0=4 وعددها a=3 أعداد.

إذن إجمالي عدد الأعداد المطلوب هو 20 عددًا.

Let the three digit number be $x = \overline{abc} = 100a + 10b + c$. So, the required difference is $\overline{abc} - (a+b+c) = (100a+10b+c) - (a+b+c) = 99a+9b = 9(11a+b)$.

The result should be consisted of three similar digits in the form $\overline{ddd} = 111d$, where $a,b,d \in \mathbb{Z}$, $1 \le a,b,d \le 9$. Hence $9(11a+b) = 111d \Rightarrow 11a+b = \frac{37d}{3}$. So, d is divisible by 3.

- Case 1: $d = 9 \Rightarrow 11a + b = 111$, this contradicts the condition $1 \le a, b, d \le 9$, $a, b, d \in \mathbb{Z}$.
- Case 2: $d = 6 \Rightarrow 11a + b = 74$, which has unique solution a = 6, b = 8, then the numbers that satisfy the condition are 680,681,682,...,689, and the number of them is 10.
- Case 3: $d = 3 \Rightarrow 11a + b = 37$, which has unique solution a = 3, b = 4, then the numbers that satisfy the condition are 340,341,342,....,349, and the number of them is 10. Hence the total number of numbers is 20.

28. كم عدد الطرق المختلفة التي يمكن من خلالها قراءة كلمة BANANA من الجدول التالي بالانتقال من خلية إلى خلية أخرى تشترك معها في ضلع؟ (يمكن المرور على الخلايا أكثر من مرة).

В	A	N
A	N	A
N	A	N

28. In how many different ways can the word *BANANA* be read from the following table by moving from one cell to another cell with which it shares an edge? Cells may be visited more than once.

(A)	(B)	(C)	(D)	(E)
14	28	56	84	لا شيء مما ذكر other value

الحل: D

الحالة الأولى: حرف N الأول في الصف الأول العمود الثالث من اليسار. تتفرع منها ثلاث حالات لحرف N الثابى:

 $2 \times 2 = 4$ أن يكون هو نفس N الأول (أي في الصف الأول العمود الثالث): عدد الطرق هو $-2 \times 2 = 1$

 $2 \times 4 = 8$ أن يكون في الصف الثانى العمود الثانى: عدد الطرق هو $2 \times 4 = 8$

 $1 \times 2 = 2$ في الصف الثالث العمود الثالث من اليسار: عدد الطرق هو $2 = 2 \times 1$.

فيكون إجمالي عدد طرق الحالة الأولى هو 14 = 2 + 8 + 4 طريقة.

الحالة الثانية: حرف N الأول في الصف الثالث العمود الأول من اليسار. وهي مشابحة للحالة الأولى وعدد طرقها هو 14 طريقة.

الحالة الثالثة: حرف N الأول في الصف الثانى العمود الثانى. وتتفرع منها حالتان لحرف N الثانى:

 $2 \times 4 \times 4 = 32$ أن يكون هو نفس N الأول (أي في الصف الثاني العمود الثاني): عدد الطرق هو $2 \times 4 \times 4 = 3$.

 $2 \times 3 \times 2 \times 2 = 24$ أن يكون في أحد الأركان الثلاثة: عدد الطرق هو $2 \times 2 \times 2 \times 3 \times 2$.

فيكون إجمالي عدد طرق الحالة الثالثة هو 56 = 24 + 24 طريقة.

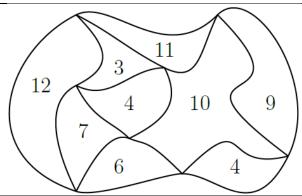
إجمالي عدد جميع الطرق هو 84 = 14 + 14 + 56 طريقة.

Case 1: The first N is in the 1st row, 3rd column. If the 2nd N is in the same, then there are $2 \times 2 = 4$ possibilities. If the 2nd N is in the 2nd row, 2nd column, then there are $2 \times 4 = 8$ possibilities. If the 2nd N is in the 3rd row, 3rd column, then there are $1 \times 2 = 2$ possibilities. Altogether, there are 4 + 8 + 2 = 14 possibilities.

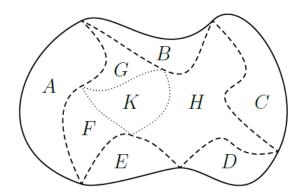
Case 2: The first N is in the 2nd row, 2nd column. If the 2nd N is in the same, then there are $2 \times 4 \times 4 = 32$ possibilities. If the 2nd N is one of the other three, then there are

 $2 \times 3 \times 2 \times 2 = 24$ possibilities. Altogether, there are 24 + 32 = 56 possibilities.

Case 3: The first N is in the 1st row, 3rd column. As in the first case, 14 possibilities.


Answer: 56 + 14 + 14 = 84.

29. يُوضح الشكل التالي خريطة حديقة مقسمة إلى مناطق. العدد المكتوب داخل كل منطقة يعبر عن محيطها بالكيلومتر. ما محيط الحديقة؟


29. The diagram shows a map of a park. The park is divided into regions. The number inside each region gives its perimeter, in km. What is the outer perimeter of the park?

(A)	(B)	(C)	(D)	(E)
22 km	26 km	28 km	32 km	لا شيء مما ذكر none of the previous

الحل: B

محيط الحديقة هو طول الخط المتصل، بينما محيطات المناطق الداخلية تشمل خطوط متقطعة وربما جزء من الخط المتصل. لذا فإن محيط الحديقة يساوي

$$A + B + C + D + E - (G + H + F) + K$$

= $12 + 11 + 9 + 4 + 6 - (3 + 10 + 7) + 4 = 26$

The sum of the perimeters of A, B, C, D and E give the length of the outside line increased by the dashed line. If we subtract the perimeters of F, G and H, then we subtract the length of the dashed line but we have now also subtracted the length of the dotted line. So, we add the length of the dotted line to compensate. In other words the perimeter of the park is (A+B+C+D+E)-(F+G+H)+K. Here it is 42 km-20 km+4 km=26 km.

30. تريد بيان كتابة الأعداد الصحيحة من 1 إلى 9 في المربعات التسعة الموضحة، بحيث أن حاصل جمع الأعداد الصحيحة في أي ثلاثة مربعات متجاورة يكون مضاعف للعدد 3. بكم طريقة يمكنها القيام بذلك؟

30. Bian wants to write the integers 1 to 9 in the nine boxes shown so that the integers in any three adjacent boxes add to a multiple of 3. In how many ways can she do this?

(A)	(B)	(C)	(D)	(E)
64	6^3	2^9	$6 \times 5 \times 4 \times 3 \times 2 \times 1$	$9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1$

الحل: 🗚

لكي نحقق المطلوب يجب أن نجعل أي ثلاثة أعداد متجاورة تحوي عددًا من مضاعفات 3 وعددًا باقي قسمته على 3 يساوي 1 وعددًا باقي قسمته على 3 يساوي 2. لذا سنقسم الأعداد إلى ثلاث مجموعات حسب باقي قسمته على 3 كالتالي:

$$A = \{3,6,9\}, B = \{2,4,7\}, C = \{1,5,8\}$$

علاوة على ذلك يجب أن تكون أعداد المربعات التي ترتيبها الأول والرابع والسابع من إحدى المجموعات A,B,C ولنسميها المجموعة الأولى، بينما أعداد المربعات التي ترتيبها الثالث المربعات التي ترتيبها الثالث والسادس والتاسع من المجموعة المتبقية ولنسميها المجموعة الثالثة (تذكر أن الأعداد في المربعات التسعة يجب أن تكون مختلفة).

In order to achieve the desired, any three adjacent numbers must contain { a multiple of 3, a number with remainder 1 when divided by 3, a number with remainder 2 divided by 3}. Therefore, we will divide the numbers into three sets according to the remainder of their division by 3, as follows:

$$A = \{3,6,9\}, B = \{2,4,7\}, C = \{1,5,8\}$$

Moreover, the numbers of squares whose order is first, fourth and seventh must be from one set, and let's call it the first set. While the numbers of squares whose order is second, fifth and eighth should be from another set, and let's call it the second set. Finally the numbers of squares whose order is third, sixth and ninth from the remaining set, and let's call it the third set (remember that all the numbers in the squares should be different.)

Now the number of ways to select the first set is 3, the second is 2 and the third is 1. So, the number of ways to select sets is $3 \times 2 \times 1 = 6$ ways. Now the number of ways to select the first square is 3, the fourth is 2 and the seventh is 1. So, the number of ways to distribute the elements of the first set is $3 \times 2 \times 1 = 6$. Likewise, the number of ways to distribute the elements of the second and third set is 6. So, the number of ways to distribute all numbers is $6 \times 6 \times 6 \times 6 = 6^4$ ways.